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We analyze the spatial distribution of the intensity of photoluminescence and its polarization in resonantly
pumped semiconductor microcavities. The strong spin anisotropy of polariton-polariton interactions leads to
the spontaneous formation of domains with strong circular polarization in real space under a uniformly polar-
ized elliptical pump. These domains can serve as an experimental map of the disorder profile present in the
system.
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I. INTRODUCTION

Nonlinear optics is a rapidly developing branch of modern
physics. The nonlinearity of an optical medium can lead to a
variety of phenomena, including self-induced transparency,
vortex formation, self-focusing, and soliton propagation.
Among the most intriguing nonlinear optical effects lie bista-
bility and multistability, resulting in a dependence of the in-
tensity and polarization of the output of an optical system on
the input pumping history.1,2 These phenomena have been
studied for more than 30 years in systems such as anisotropic
crystals,3 magnetic cavities,4 and vertical cavity surface
emitting lasers.5 However, in the systems investigated previ-
ously, extremely high excitation powers6 ��10 MW /cm2�
are required for the observation of multistable effects linked
to optical nonlinearities.

Recently, it was pointed out that planar semiconductor
microcavities7 represent a unique laboratory for the study of
nonlinear optical phenomena under relatively weak pump in-
tensities �e.g., 650 W /cm2 in Ref. 8�. A semiconductor mi-
crocavity is a photonic structure designed to enhance the
light-matter interaction; cavity photons are confined between
two mirrors and resonantly interact with the excitonic tran-
sition of a two-dimensional �2D� semiconductor quantum
well. In the strong coupling regime the normal modes of the
system are cavity polaritons.7 Being combinations of the cav-
ity photon and 2D exciton, they have extremely small effec-
tive mass ��10−4–10−5 of the free electron mass, me� while
also efficiently interacting with each other. Due to a long
decoherence time9 and the fact that in the low density limit
they behave as weakly interacting bosons10–12 the dynamics
of polaritons in real space can be described by the Gross-
Pitaevskii equation,13,14 equivalent to the nonlinear
Schrödinger equation of classical nonlinear optics. Polariton-
polariton interactions lead to various nonlinear effects in-
cluding the suppression of Rayleigh scattering,13 parametric
scattering,15–17 bistability,18–20 and pattern formation in real
space.21,22

An important peculiarity of a polariton system is the spin
structure of a polariton state; being formed usually by heavy-
hole excitons, polaritons have two allowed spin projections
on the structure growth axis ��1�, corresponding to the right
and left circular polarizations of counterpart photons. In the
absence of an external magnetic field the “spin-up” and

“spin-down” states of noninteracting polaritons or their lin-
early polarized superpositions are degenerate. The situation
changes if polariton-polariton scattering is accounted for: the
interaction of polaritons in triplet configuration �parallel spin
projections on the structure growth axis� is much stronger
than that of polaritons in singlet configuration �antiparallel
spin projections�.23,24 This leads to a mixing of linearly po-
larized polariton states which manifests itself in remarkable
nonlinear effects in polariton spin relaxation, such as self-
induced Larmor precession and inversion of linear polariza-
tion upon scattering.25

Another timely topic in the field of microcavity physics is
the influence of disorder on the properties of cavity polari-
tons. Almost all existing experimental data clearly show
strong localization of polariton condensates due to the struc-
tural photonic imperfections10,26 and signatures of superflu-
idity have been reported only very recently.27,28 The theoret-
ical description of polariton dynamics in a nonresonantly
pumped disordered cavity in terms of a transition from a
glassy to a superfluid phase was recently given.29 However,
the interplay between spin anisotropy of polariton-polariton
interactions and disorder was completely neglected.

In the present Rapid Communication we analyze the po-
larization sensitive behavior of a resonantly pumped micro-
cavity with a long-range �photonic� disorder, which was
shown to affect crucially the properties of cavity polaritons.30

We are particularly interested in the behavior of polarized
domain walls, which requires the use of the nonlinear Gross-
Pitaevskii equation13 accounting for the two polarization
states31 so as to allow polarization multistability of reso-
nantly driven polariton modes. The interplay between polar-
ization multistability and long-range photonic disorder
causes polarization resolved spatial images to directly re-
semble the structure of disorder allowing its experimental
mapping. Given the importance of the disorder profile in
many microcavity experiments, for example, in the optical
spin Hall effect32 or experiments searching for superfluidity
�involving scattering with a defect13,28�, we believe that the
polarization mapping of disorder will become an important
experimental tool. We calculate the distribution of the pho-
toluminescence intensity and its polarization for the cases of
optical excitation at normal incidence �directly generating
polaritons with k=0� as well as magic angle excitation15–17

�under which pairs of pumped polaritons scatter into signal
�k�0� and idler states�.
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Although imaging of optical disorder has been experi-
mentally demonstrated by spatially resolving the emission of
a polariton condensate,10,26 we expect the technique that we
propose can offer higher resolution. We exploit sharp domain
walls and are unaffected by the complicated energy relax-
ation dynamics of polaritons, which involves traveling po-
laritons as intermediate states. Furthermore we are relying on
a classical optical effect and we expect that some of the
challenging conditions required for polariton condensation
can be relaxed, for example, we expect that optical bistability
is much more resilient to phonon scattering. Finally, since we
excite polaritons at energies not too far from resonance,
much lower excitation powers can be used.

II. PUMPING AT NORMAL INCIDENCE

First, we consider the case of optical excitation at normal
incidence. If one neglects the upper polariton branch �the
pump energy lies below the upper branch energy, so upper
branch polaritons are not excited�, the polariton field is de-
scribed by a pair of wave functions ��, which satisfy the
driven spinor Gross-Pitaevskii equation,31

i�
���

�t
= �ÊLP + U + �1����2 + �2��−��2��� + p�, �1�

where �= �1 labels right and left circular polarizations. ÊLP
is the kinetic energy operator of lower branch polaritons,
which can be written in reciprocal space as

ELP�k�� =
EC�k�� − EX�k��

2
−

1

2
��EX�k�� − EC�k���2 + �2, �2�

where the exciton energy levels, EX�k��, and photon energy
levels, EC�k��, are characterized by effective masses, mX and
mC �here we assume zero detuning between the photon and
exciton modes at k� =0�,

EC,X�k�� =
�2�k��2

2mC,X
−

i�

�C,X
. �3�

The phenomenological lifetimes, �X and �C, account for ex-
citon recombination and photon escape. � is the Rabi split-
ting �twice the exciton-photon coupling energy�. U is a ran-
dom spatially varying disorder potential �see Fig. 1�b��
characterized by a correlation length, l, and root mean
squared amplitude Urms. The potential was generated using
the same method as in Ref. 33. We assume the disorder to be
spin independent. �1�2� are matrix elements of the polariton-
polariton interaction in the triplet �singlet� configuration.
Polariton-polariton interactions are strongly anisotropic and
normally �1	0, �2
0, ��2���1.23 The polarized optical
excitation is defined by p�= f�e−iEpt/�, where f� can vary both
in space and time. Ep is the pump energy. We neglect any
k�-dependent susceptibility of the pump, which would only be
important if we used wide distributions in k� space. Nonuni-
form absorption in space is automatically accounted for by
the disorder potential, U.

Before presenting our results, let us summarize qualita-
tively the effects of polarization multistability by considering

the state of polaritons at a single point in space, neglecting
coupling to neighboring states �i.e., in the limit of infinite
polariton mass, also known as the Thomas-Fermi approxima-
tion�. Imagine the pump is oriented at normal incidence, such
that polaritons are excited with zero in-plane wave vector. In
the stationary regime31 Eq. �1� yields a cubic dependence of
the polariton intensity, n�= ����2, on the pump intensity,
P�= �p��2,

	�� + �1n� + �2n−��2 +
�2

4�2
n� = P�, �4�

where �=E0−Ep is the detuning between the bottom of the
lower polariton branch, E0, and the optical pump. � is the
effective polariton lifetime. Supposing that �2=0, the depen-
dence of the internal polariton intensities on the pump inten-
sity is an S-shaped curve �identical for the two polarized
components, �= �1�, as shown in Fig. 1�a�.

It is useful to define the circular polarization degree
of a polariton state as c= �n+−n−� / �n++n−�. If, when the
external pump is switched on, P+ , P−� P1 then the solutions
for the internal fields, n+ and n−, both lie on the lower
branch of the S-shaped curve. In this case c�c

pump, where
c

pump= �P+− P−� / �P++ P−� is the circular polarization degree
of the pump. On the other hand, if P−� P1� P+ then the
solution for the �+ polarized internal field switches to the
upper branch of the S-shaped curve while the solution for the
�− polarized internal field remains on the lower branch. Con-
sequently, the internal field is strongly circularly polarized;
c�1 even if c

pump�1. Finally, if P+ , P−	 P1 the solutions
for both polarizations lie on the upper branch and the situa-
tion c�c

pump is recovered. If one then starts to decrease the
pump intensity then the reverse switching between upper and
lower branches occurs at a different point, P2, leading to the
appearance of hysteresis not only in the total intensity of the
internal polariton field but also in its circular polarization
degree.31 One can imagine an optical memory element based
on this hysteresis.22

Now let us consider the influence of disorder. For some
qualitative understanding let us again consider the case of
polaritons with an infinite effective mass. In this case their

P1P2

PΣ

n1

nΣa b

FIG. 1. �a� The spinor polariton population, n�, as a function of
pumping intensity, P�, for a single polariton state. With increasing
intensity, the population, n�, jumps when P�= P1 to the upper
branch of the bistability curve. �b� Amplitude of a randomly gener-
ated disorder potential, U, characterized by Urms=0.5 meV and
l=5 �m �these parameters are roughly inferred from experiments
on polariton condensation �Ref. 26��. The black lines show contours
along which U=0.
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in-plane propagation is blocked. Due to the presence of the
disorder potential the detuning, �=��r�, becomes position
dependent. Consequently, the shape of the S-shaped curve
�Fig. 1�a�� is different at different points, causing the total
intensity and circular polarization degree to also become spa-
tially dependent; in some places both n+ and n− lie on the
upper branch of the S-shaped curve, while at others they both
lie on the lower branch or n+ lies on the upper branch while
n− lies on the lower branch. The account of a finite effective
mass can smear this picture a little, but a strong spatial de-
pendence of the polariton field survives, which mimics the
spatial dependence of the disorder potential.

Solving Eq. �1� numerically �with finite polariton mass�
yields the results plotted in Fig. 2. The results depend on the
�spatially averaged� detuning, ���. The pump intensity is
fixed. When the average detuning is zero �Figs. 2�a� and
2�b�� the average value of P1 is exceeded by the pump in-
tensity in both polarizations at most points, such that c�0.
In fact many points do not exhibit bistability at all since one
must have �
−�3� /� for a bistable curve.18–20 Only a few
points far from the center of the pump spot, where the pump
intensity is weak, show significant polarization degree. As
��� is decreased �Figs. 2�e� and 2�f��, by increasing the pump

energy, the effect of the disorder on the polarization becomes
more significant. The locus of points along which c sud-
denly jumps tends to follow the contours in the disorder
potential �shown by black lines�. In this sense one can imag-
ine using a polarization resolved image of the microcavity
photoluminescence to map the disorder profile.

III. PARAMETRIC OSCILLATOR CONFIGURATION

Currently in the field of microcavities, many experiments
focus on excitation at magic angle,15–17 where energy and
momentum conservation laws allow the scattering of pairs of
pumped polaritons with k=kp into signal states with k=0 and
idler states with ki=2kp. Since this is a popular excitation
scheme, an obvious question is whether the disorder poten-
tial can be mapped by mapping the signal distribution of an
optical parametric oscillator �OPO�.

Theoretically, an optical pump at oblique angle modulates
the spatial dependence of p� by a factor eikpx, where kp is the
in-plane wave vector of injected polaritons. Making this
change and again solving Eq. �1� numerically yields the re-
sults in Fig. 3. In Fig. 3�a� the spectral �energy� distribution
of polaritons is shown in reciprocal space �along an axis
parallel to k�p�, clearly demonstrating the parametric scatter-
ing of polaritons to the signal �k=0� state. Figure 3�b� shows
the spectral distribution along a slice in real space �along an
axis parallel to k�p�. The disorder potential is also shown by
the white curve. The disorder potential changes the polariton
eigenenergy at different points, which alters the stability of

e f

c d

a b

FIG. 2. The polariton field in a 0.4�0.4 mm2 area in real space
under Gaussian cw excitation at normal incidence with c

pump=0.2.
Left-hand plots show the total intensity �arbitrary units� of the po-
lariton field, n++n−; right-hand plots show the circular polarization
degree, c. The different rows correspond to different �spatially av-
eraged� detuning: �a� and �b� ���=0 meV; �c� and �d�
���=−0.5 meV; and �e� and �f� ���=−1 meV. The disorder poten-
tial was the same as the one plotted in Fig. 1�b� and black lines
again represent contours along which U=0. Parameters:
mC=10−4me, mX=0.22me, �2 /�1=−0.1, �=3 ps, and
Urms=0.5 meV. The Gaussian pump had a full width at half maxi-
mum of 100 �m.

c d

a b

FIG. 3. Plots of the polariton field under a Gaussian cw excita-
tion at magic angle with c

pump=0.2. �a� Energy-momentum disper-
sion diagram of the polariton intensity. The dotted white curve
shows the dependence of the polariton eigenergy on the wave vec-
tor �spatially averaged�. �b� The energy distribution of polaritons in
space. The white curve shows the distribution of the polariton po-
tential. �c� The distribution of the signal intensity in real space. �d�
The circular polarization degree of the signal in real space. In �c�
and �d� the black curves show contours in the disorder potential at
−0.5 and −1 meV. Parameters were the same as in Fig. 2 but
k�p=1617 mm−1, �=10 meV, Ep=ELP�k�p�, mC=10−5me,
�C=1.3 ps, and �X=100 ps.
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pump, signal, and idler modes.20,34 The signal intensity does
tend to follow contours in the disorder potential as shown in
Fig. 3�c�. However, the behavior of c in space does not.

An understanding of parametric scattering in the OPO can
be derived from Refs. 20 and 34 where a three mode coupled
system was considered neglecting the polarization degree of
freedom. Given that we pump elliptically we expect the in-
tricate effects reported in their work to have a complicated
polarization sensitivity—a treatment of which goes far be-
yond the scope of our work. Furthermore, we are aware of
effects such as self-induced Larmor precession, polarization
inversion upon parametric scattering, and spreading effects
of domain walls.35 An understanding of how these effects
interplay is an open question, although all these effects are
accounted for in our numerical model. Our conclusion is that
polarization mapping of a disorder potential is not feasible
under the parametric oscillator excitation scheme, although
excitation near normal incidence remains promising.

IV. CONCLUSIONS

We considered the effect of the spatially varying disorder
in semiconductor microcavities upon the intensity and polar-

ization of resonantly pumped exciton polaritons. It was
shown that, under excitation at both normal incidence and
magic angle, domains with strong circular polarization de-
gree develop. We believe that the considered effect provides
a simple but previously unused method �using excitation
near normal incidence� for imaging the disorder potential in
microcavities; one need only take a polarization resolved im-
age of the photoluminescence rather than measure dispersion
curves at every point across the sample. Furthermore, by
relying on domain walls the characterization can be particu-
larly accurate. Indeed the disorder present in microcavities
has a significant influence on all imaginable experiments and
for some it is even an essential ingredient. It is obvious that
experimentally measured maps of the disorder potential
would allow a better understanding of this influence in many
cases.
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